カテゴリー: 系外惑星の紹介

Transiting Exoplanet Survey Satellite (TESS)

Transiting Exoplanet Survey Satellite (TESS)

〈ミッション概要〉

TESSは太陽系近傍にある明るい恒星の周りを周回する惑星を、トランシット法によって探索することを目的とした2年に及ぶMITが率いるNASAのミッションである。TESSは2018年4月にSpaceX社のFalcon9に乗せて打ち上げられた。それから約60日後に予定していた周期13.7日の楕円軌道に到達し、観測を開始した。約2年のミッション期間で、惑星によってトランジットという現象が起こる主系列矮星を少なくとも200,000個観測するために、 TESSには広範囲の視野を持つ4つのCCDカメラが搭載されている。TESSは先に行われたNASAのKeplerミッションに比べて350倍の広さとなる全天の85%以上を探索し、ターゲットとなる恒星の光度は2分ごとに記録される。また4つのカメラ視野全体(天球上の24°×96°に及ぶ範囲)のフルフレームイメージも30分ごとに記録される。TESSのターゲットとなる恒星はKeplerミッションのターゲットに比べて30~100倍明るいため、フォローアップ観測によって系外惑星が特徴づけやすくなっている。TESSは全天観測によって海王星よりも小さいサイズの惑星を1,000個以上発見することが期待されており、その中には数十個の地球サイズ惑星が含まれている。また観測データは、多くの研究者がすぐに新たな惑星の研究に着手できるよう4か月ごとにデータが公開されている。

〈ミッションの背景〉

惑星が観測者と恒星の間を横切ると、その惑星によって恒星の光の一部が遮られる現象が起こる。このような現象はトランジットと呼ばれ、系外惑星の検出方法の一つとして利用されている。トランジットする惑星に対しては惑星の質量、半径、軌道に関する情報、さらには大気組成を推定することが可能なのでトランジット惑星は非常に重要である。

その中でも特に興味深いのは、地球サイズから海王星サイズの大きさをもつ系外惑星である。しかしながら太陽系にはそのようなサイズの惑星が存在しないため、それらの惑星については多くのことが分かっていない。TESSの先行ミッションであるKelperミッションでは、そのような地球~海王星サイズの惑星が数多く存在し、多様な組成や興味深い周回軌道を持っていることを明らかになり、系外惑星の研究に革命をもたらした。しかしKeplerで観測された恒星の多くは詳細なフォローアップ観測をするためには明るさが十分ではなかった。

そこでTESSミッションでは、地球から約200光年以内の太陽系近傍にある明るい恒星を探索してトランジット惑星を発見することが計画された。TESSが観測する恒星は、Keplerが観測したものに比べて概ね30~100倍程度明るいため、そのような恒星の周囲で発見された惑星は Keplerで発見されたものに比べてはるかにフォローアップ観測が容易である。

〈ミッションの目標〉

TESSの主要なミッションは2018年7月25日から2020年7月4日までの2年間行われた。この2年間で、TESSは地上からのフォローアップ観測によって特徴づけることができる太陽系近傍の惑星を発見することを主要な目標として探索を行なった。特にTESSミッションにおける科学的な要請は次のようなものである。

  1. 軌道周期が10日より短く、半径が地球の5倍未満の大きさの惑星および少なくとも地球の2.5倍の半径を持つ惑星を発見するために200,000個以上の恒星を観測すること。
  2. 黄道の極の周辺領域にある約10,000個の恒星の周りに、軌道周期が120日までの惑星を見つけること。
  3. 惑星半径が地球の4倍未満の少なくとも50個の惑星の質量を決定すること。

このような科学的要請により、TESSは地球サイズの惑星を含む約20,000個の系外惑星を発見することが期待され、特に地球サイズに近い大きさの惑星については、50個以上の地球サイズ惑星と地球の1~2倍の大きさを持つ惑星を500個発見する計画である。TESSによる観測において、主に地球半径の2倍よりも小さい惑星は2分毎に得られる恒星の光度データから発見され、それよりも大きな惑星の多くは30分毎に得られるフルフレームイメージから発見されると想定された。また海王星サイズよりも大きい惑星に関しては17,000個以上発見することが期待された。

特にTESSの最も重要な目標は、惑星の質量や大気組成の推定に十分な明るさをもつ恒星を周回する海王星よりも小さなトランジット惑星を数千個発見することであった。そしてこの目標は2年間におよぶ全天観測によって達成された。2年間のミッションの間には、数十万個もの恒星に対して異なる2種類のタイムスケールで測光が行われた。得られたTESSの観測データの主な価値は、データの数や網羅性ような統計的なものではなく、現在稼働している観測機器やその後予定されている機器によるフォローアップ観測の容易さにあった。TESSのトランジット観測によって主星に対する惑星の大きさおよび軌道に関するパラメータを決定することができるが、さらに地上からその系外惑星をフォローアップ観測することによって惑星の質量も推定することができる。また惑星の大きさと質量を組み合わせることで惑星の密度が推定でき、その惑星の組成(巨大ガス惑星?水惑星?岩石惑星?など)の予想が可能になる。それに加えてトランジット観測は惑星同士の相互作用のような惑星系のダイナミクスの研究にも活用できる。このようにして、TESSによる観測で系外惑星について様々な情報が得られる。

〈観測する恒星の数〉

先行のKeplerミッションにおいて、公転周期が10日より短いスーパーアース(地球半径の1.25~2倍の半径をもつ系外惑星)のトランジット検出率は約0.2%であった。これはトランジットの発生率(~5%)とTESS・恒星・惑星の位置関係による幾何学的なトランジットの確率(~5%)の積として算出された値である。このことから同じ検出率を仮定すると、TESSでは一つのスーパーアースの検出に対して、少なくとも500個の恒星を観測する必要があることがわかる。さらにスーパーアースを数百個発見するという要請から、100,000個以上の恒星を観測することが必要となる。

〈観測する恒星のタイプ〉

理想的には全てのスペクトル型を観測することが望ましいが、ミッションのコストやリスクを考慮すると、観測する恒星のスペクトル型を限定することが合理的である。そこでTESSミッションではスペクトル型がF5~M5までの主系列矮星の集中的な観測が計画された。まず進化末期の恒星や早期型矮星は大きく、小さな惑星の検出が難しいことが知られている。特にF5よりも高温のスペクトル型をもつ矮星は急速に回転し、スペクトル線が広がるため正確な視線速度観測も妨げられる。そのためフォローアップ観測での正確な測定に適さない。このことからF5よりも高温側のスペクトル型を持つ恒星はTESSのターゲット候補としては最適でない。

さらにスペクトル型の低温側では、M型矮星が特に魅力的なターゲットである。M型矮星は数が豊富で太陽系の近くにある恒星の約4分の3がM0~M5型の矮星である。しかしながらKeplerミッションのターゲットリストにおいてM型矮星はごく少数だったため、それらを周回するトランジット惑星は他に比べてあまり調査されていない。さらに小さい惑星のトランジット信号については、見かけの等級が同じでサイズがより大きい惑星と比べると、M型矮星の方が検出しやすい。このことは系外惑星の発見とJWSTやその他の天体望遠鏡によるフォローアップ観測の両方を容易にすることができる。そのためM型矮星はTESSのターゲット候補として望ましいと考えられた。

またM5よりも低温のスペクトル型をもつ恒星は希少であり、明るさも小さい。またそのような恒星は赤外線付近の波長で有利に観測できるが、これはミッションのコスト・複雑さ・リスクを大幅に増加させてしまう。さらに最も低温側のスペクトル型をもつ恒星をトランジットする惑星はMEarthサーベイのような地上の観測機器でも検出可能である。このことからM5よりも低温側のスペクトル型をもつ恒星は比較的にターゲット候補としては適さない。

以上の理由から、TESSミッションではF5~M5型の範囲のスペクトル型をもつ恒星に集中して観測が行われた。

スペースクラフト(宇宙機)

〈概要〉

TESSはアメリカの企業 Northrop Grumman Innovation Systems の LEOStar-2/750という衛星バスを使用している。この衛星バスは三軸方向のヒドラジン一液式推進系と2つのスタートラッカーをもつゼロモーメンタム方式の姿勢制御システムによって姿勢制御されている。機体に必要な指向精度は4つのリアクションホイールと科学用カメラの情報から算出される四元数を用いて達成されている。また衛星バスは2枚の展開型太陽電池パドルを装備している。この太陽電池パドルは合計415Wの電力を生み出すことができ、宇宙機全体で必要とされる290Wの電力を供給する。さらに衛星バスには機体に固定された直径0. 7mのハイゲインアンテナに接続されたKaバンド送信機が装備されている。送信機は2Wの電力で動作し、100Mb/sのデータ転送レートで地上にデータを送信することが可能である。このデータ転送レートの値は、宇宙機が近地点に位置する4時間の間に科学データを地上に送信するのに十分な値である。また宇宙機には太陽輻射圧によって角運動量が蓄積するため、それを排除するためにヒドラジンスラスターという装置も備えられている。

〈軌道〉

TESSの軌道は、近地点と遠地点がそれぞれ地球半径の17倍および59倍の位置にある楕円形をしている。この軌道は周期が13.7日であり、これまでのミッションでは使用されたことのない P/2として知られる月と2:1の軌道共鳴にある安定な軌道である。観測に適するように設定されたこの楕円軌道は様々な利点がある。まず黄道面から傾いているため地球や月によって長時間視界が遮られることがない。またこの軌道における月の重力による外乱を平均すると、宇宙機の遠地点が90°付近に留まるようになっているため操作も容易である。さらに軌道は常に地球の放射帯(ヴァン・アレン帯)の外側にあり、ミッション全体での電離放射量が10Gy以下の比較的低放射線量環境である。この環境は温度変化も非常に小さく(軌道のうち90%で温度変化<0.1℃/hr、全体でも<2℃/hrである)、CCD検出器をほぼ-75℃という適温で動作させることが可能である。軌道周期と軌道長半径は比較的一定であり、離心率と傾きの交換も周期8~12年と長期的である(これはKozai-Lidovメカニズムによる)。太陽からの外乱による周期6か月の短期的周期振動も存在するが、軌道は数十年やそれ以上のタイムスケールで安定的であり、軌道を維持するための推進力も必要としない。

さらにこの軌道への到達までには、効率的に月の重力を利用して推進力を増加させる機構を使うことができる。またこの機構を使用するために宇宙機が辿る経路は打ち上げ日時と機体に依存することになる。計画では、TESSはケープカナベラル宇宙軍施設 (Cape Canaveral/フロリダ州)から上空600kmの赤道に対して28. 5°傾いた中継軌道へと打ち上げられる。この軌道で固体推進剤ロケットモータを切り離し、さらにTESSに搭載されたスラスターを使用して回転力を小さくした後に太陽光電池パドルを展開する。その後、宇宙機のヒドラジン推進系による2回の燃料噴射により遠地点を第一段階で250,000km、第二段階で400,000kmまで上昇させる。2回の噴射はそれぞれ第一段階と第二段階の軌道の近地点で行われる。そして3回目の近地点における軌道調整の後、月フライバイによって黄道に対する傾きを40°まで上昇させる。その後、最終調整によって目標となる遠地点と公転周期13.7日を達成する計画である。最後の軌道には打ち上げの約60日後に到達し、その後すぐに観測が開始される。

〈周期感度〉

理想的には数時間程度の周期から1年やそれ以上の比較的長い周期までの広範囲で惑星を検出したい。しかし最大周期をいくつに設定するかによってミッションの持続期間が決定し、最終的にコストに影響を及ぼすため、最適な値を設定する必要がある。さらにトランジット法による観測は本質的に短い周期に大きく偏っている。実際、トランジットによる検出効率と惑星出現の周期依存性を考慮したKeplerの検出周期の分布は最大10日である。このことから10日程度の短い最大周期でも多くの系外惑星を発見することが可能である。

10日ほどの長さの最大周期を設定すれば、太陽のような恒星を周回するハビタブル惑星を除外することにはなってしまう。しかし全天を分割した観測範囲一つについて少なくとも40日以上の最大周期で観測すれば、M型矮星のハビタブルゾーンに位置する惑星を検出することは可能である。さらに分割した観測範囲のうちより広範囲に探索するセクターがあれば、後のJWSTの広範囲に連続した視野と一致させるのに都合が良い。またJWSTのそのような視野の範囲は黄道の極に集中している。以上のことから、最大周期は概ね10日程度とし、黄道の極付近においては可能な限り広く最大周期40日の範囲を取ることになった。

〈カメラとスキャン計画〉

TESSは同じカメラを4つ搭載しており、2年間の主要ミッション期間にそれらを連携させて全天観測を行う。1つのカメラは 24°×24° の広視野をもつ f/1.4 のレンズを装備している。レンズの口径は直径10cmであり、これは惑星に対する検出能をシミュレーションして決定された効果的な値である。4つのカメラの視野は1×4の配列として動作し、24°×96°の連結した視野を提供する。星の検出には高いケイデンスが必要なため、ターゲット候補の惑星や恒星への露出は2分毎に行われ、30分毎に視野全体のフルフレームイメージ (FFIs)も取得される。各カメラは次の特徴を持っている:

・24°×24°の視野

・100mmの効果的なひとみ径

・7つの光学要素をもつレンズ

・温度変化の影響を受けにくい(アサーマルな)設計

・600nm-1000nmのバントパス

・4つのCCDから成るMIT-Lincoln Labの16.8メガピクセル・低ノイズ・低電力のCCID-80検出器

探索する視野については、黄道の北半球及び南半球がそれぞれ黄道の緯度6°から黄道の極までの24°×96°を1セクターとして部分的に重なった13のセクターに分割されている。各セクターは太陽と反対側を向いた4つのカメラによって、軌道の2周期分(27.4日間) にわたり連続的に観測された。軌道を2周すると、次のセクターを観測するため視野を黄道の経度で約27°東に視野を移行する。このため半球を観測するのに1年、全天観測には2年を要する。このスキャンによって約30,000平方度が少なくとも27日間、黄道の極の近くでは約2800平方度が80日以上観測されることになる。さらに黄道の極の周囲では約900平方度が300日以上観測される。

参考文献

Ricker, G. R., et al.,”The Transiting Exoplanet Survey Satellite”/1406.0151.pdf (arxiv.org)

TESS – Transiting Exoplanet Survey Satellite (mit.edu)

TESS Science Support Center (nasa.gov)

The TESS Science Writer’s Guide (nasa.gov)

Proxima Centauri d

Proxima Centauri d は、太陽系から 4.2 光年( パーセク)離れた恒星Proxima Centauri を周回する系外惑星で 2020 年に公開されました.
恒星 Proxima Centauri は視等級 11.1, 絶対等級 15.6 です.
この恒星は太陽の 0.1 倍の質量で、 半径は太陽の0.1 倍であり 表面温度は 3050 で、スペクトル型は M5.5Vです。
この恒星の惑星系で Proxima Centauri d は、恒星 Proxima Centauri のまわりを 公転周期5.2 日で、 軌道長半径 0.03 天文単位 ( 4315898.6 km)で公転しています。

Proxima Centauri dは、地球から約4.2光年先にあり太陽から最も近い恒星とされるProxima Centauriの周りを公転する太陽系外惑星だ。公転周期は約5.17日と短く中心星の近くを公転しているが、中心星であるProxima CentauriはM型矮星で温度が低いためProxima Centauri dの黒体温度(アルベドを0.3と仮定)は約297Kと液体の水が存在できる温度に計算されており、ハビタブルゾーン内に位置する。

2022年2月にヨーロッパ南天天文台より正式にProxima Centauri d発見の報告がなされた。これまでProxima Centauriの周りには他に二つの惑星が確認されており、恒星系としては注目されていたのだがこの惑星の発見報告には至っていなかった。今回発見に用いた視線速度法(ドップラー分光法とも言う)という観測方法は、中心星が惑星の質量に影響されて惑星の公転時に生まれるわずかな揺れを利用し、惑星の情報を得るというものである。しかしProxima Centauri dは地球の4分の1程度の質量しかなく、恒星に与える影響は小さい。発表によると、Proxima Centauri dによる視線方向の移動速度は秒速約40cmしかなかったということだ。これまで以上に精度が求められる観測だったのは間違いないだろう。実際、存在可能性が示唆されてから発見報告まで約2年の月日を要している。
これほどまでに小さな惑星を発見できたことは大きい。Proxima Centauri dを筆頭にこれまで発見しきれなかったハビタブル惑星が続々と見つかるかもしれない。

(文責:名取)

TOI-2285 b

TOI-2285 b は、太陽系から 138.3 光年( パーセク)離れた恒星TOI-2285 を周回する系外惑星で 2021 年に公開されました.
恒星 TOI-2285 は視等級 13.4, 絶対等級 10.3 です.
この恒星は太陽の 0.5 倍の質量で、 半径は太陽の0.5 倍であり 表面温度は 3491 で、スペクトル型は M4です。
この恒星の惑星系で TOI-2285 b は、恒星 TOI-2285 のまわりを 公転周期27.3 日で、 軌道長半径 0.14 天文単位 ( 20390189.8 km)で公転しています。

 

TOI-2285bTESSによるトランジット法で検出された東京大学および自然科学研究機構アストロバイオロジーセンターを始めとするチームが発見した。 

公転周期は27.3日で半径は地球の1.73倍、質量は地球の19.52倍のスーパーアースで中心の恒星TOI-2285から約0.14天文単位のところで公転している。地球より僅かに大きいが、今まで発見されてきた系外惑星の中では小さいほうである。 

 

 恒星TOI-2285の表面温度は約3500Kでの赤色矮星である。太陽と比べて、半径が0.5倍、質量も0.5倍と小さい。 

  

TOI-2285bは液体の水の層が存在するのではないかと注目を集めている。薄い大気のが岩石惑星ならば水はすぐに蒸発してしまうが、東京大学の天文学者福井明彦博士は「岩石惑星はハビタブルゾーンの外に存在するとしても、水素雰囲気下で液体の水を保持する可能性がある」という。  

主星が明るいので詳細な観測が可能なため、さらなる解明が進むことが考えられる。 

惑星の内部の詳しい情報、水の存在の確認が期待される。  

(文責:石原 一真)

 
 
参考文献:
 
 
 
 
 

この惑星の詳細は以下のリンクをご覧ください。

http://www.exoplanetkyoto.org/exohtml/TOI-2285_bJP.html

AB Aurigae b

AB Aur b は、太陽系から 469.7 光年( パーセク)離れた恒星AB Aur を周回する系外惑星で 2008 年に公開されました.
恒星 AB Aur は視等級 7.1, 絶対等級 1.3 です.
この恒星は太陽の 2.4 倍の質量で、 半径は太陽の1.7 倍であり 表面温度は 9600 で、スペクトル型は A0Vです。

 

史上初:惑星の赤ちゃんを直接撮像。現在も成長し続ける原始惑星。

日本語表記は「ぎょしゃ座AB星b」。誕生から200万年程度しか経っていないとされる若い星(Ae/Be型星)であるぎょしゃ座AB星のガス円盤内に存在する原始惑星。地球から約508光年離れており、恒星(ぎょしゃ座AB星)から約93天文単位も離れた位置を公転している。質量は木星の9~12倍、半径のは木星の約2.75倍と予測されている。

2022年、国立天文台ハワイ観測所のThayne Currie氏を筆頭とする研究グループは、すばる望遠鏡とハッブル宇宙望遠鏡を使って今まさに成長しつつある原始惑星の直接撮像の成功を発表した。未だ惑星が形成される材料となるガスと塵の中に存在している原始惑星が撮像によって発見されたのは史上初とされている。
また、一般的な原始惑星系円盤の中で塵が少しずつ集まって惑星に成長していく「コア集積モデル」に対して、恒星から50天文単位を超える距離において原始惑星系円盤の一部が自身の重力で分裂・収縮して比較的速やかに惑星が形成されるという「円盤自己重力不安定モデル」と呼ばれる別のプロセスが提唱され、惑星形成に関する理論に重要な知見をもたらした。
すばる望遠鏡の SCExAO (スケックスエーオー) と CHARIS (カリス) は系外惑星や恒星まわりの円盤を観測するための最新鋭装置で、両者を組み合わせることで高いコントラストで天体を撮像し、同時にそのスペクトルを観測することが可能である。SCExAOはシャープな星像を作る極限的な補償光学系、CHARIS は天空の微小な面の各点のスペクトルを一度に取得できる面分光の機能を持つ。
この惑星は2016年に最初に検出されたが、新しく形成された惑星ではなく「ぎょしゃ座AB星」の原始惑星系円盤の一部を識別したとされていた。しかし、その後のすばる望遠鏡で得られたSCExAO/CHARISデータは、ぎょしゃ座AB星bのスペクトルが原始惑星系円盤のスペクトルとは異なり、温度が新しく生まれた惑星の予測値と類似していることを示したため、ぎょしゃ座AB星bがぎょしゃ座AB星の周囲を公転しており、背景にある恒星などではないという証拠が確認された。

Currie, T., Lawson, K., Schneider, G. et al. Images of embedded Jovian planet formation at a wide separation around AB Aurigae. Nat Astron 6, 751–759 (2022). https://doi.org/10.1038/s41550-022-01634-x
天文学:木星型の太陽系外惑星の形成過程が観測された | Nature Astronomy | Nature Portfolio (natureasia.com)
Hurley, Timothy (April 9, 2022). “Mauna Kea scientists discover emerging planet”. Honolulu Star-Advertiser.

(文責:小川)

Imaginary picture of AB Aurigae b (illastrated by Yui Nagato)

Imaginary picture of AB Aurigae b (Illustrated by Yui Nagato)
Imaginary Picture of AB Aurigae b

WASP-121 b

WASP-121 b は、太陽系から 853.8 光年( パーセク)離れた恒星WASP-121 を周回する系外惑星で 2015 年に公開されました.
恒星 WASP-121 は視等級 10.4, 絶対等級 3.3 です.
この恒星は太陽の 1.4 倍の質量で、 半径は太陽の1.5 倍であり 表面温度は 6460 で、スペクトル型は F6Vです。
この恒星の惑星系で WASP-121 b は、恒星 WASP-121 のまわりを 公転周期1.3 日で、 軌道長半径 0.03 天文単位 ( 3805769.8 km)で公転しています。

 

公転と自転周期がほぼ同時のホット・ジュピター。昼半球と夜半球の気温差によりルビーやサファイアの雨?

2015年に太陽系外惑星探査プロジェクトスーパーWASPによる観測で発見された。
地球から「とも座」の方向におよそ880光年離れた位置にある灼熱巨大ガス惑星で、F型主系列星WASP-121の周囲を公転している。質量は木星の約1.2倍、半径は木星の約1.8倍で、恒星(WASP-121)から380万kmとかなり近い距離を1日余り(約30時間)で公転する。表面温度は約2000 K、上層大気は約2500Kにもなる「ホット・ジュピター」の一つ。
自転周期が公転周期とほぼ同じで、半面は常に恒星を向く昼半球(もう半面は常に外を向く夜半球)となるのが特徴的。
夜半球ですら気温が1500℃を超えるので、地球の様な水の雲ではなく、鉄やマグネシウム、クロム、バナジウムといった金属で構成される雲が存在している。
2017年、ハッブル宇宙望遠鏡による観測でWASP-121 bの大気組成が水蒸気、酸化バナジウム(II)、酸化チタン(II)が含まれている事が明らかになり、成層圏が存在することはほぼ間違いないとされる。

2019年、恒星に近いことから潮汐力によってWASP-121 bは引き裂かれる寸前といえる状態で、フットボールのような形状になっていると考えられる。David Sing氏らはハッブル宇宙望遠鏡に搭載されている「宇宙望遠鏡撮像分光器(STIS)」の観測データを使い、雲のなかに凝縮している鉄やマグネシウムといった金属までもが、軽い元素(水素やヘリウム)とともに惑星から離れた宇宙空間へ流出していることを確認した。

2022年、ハッブル宇宙望遠鏡でWASP-121 bの昼半球と夜半球の両方のスペクトル解析により、地球とは異なる水循環が確認された。常に恒星を向く昼半球では上層大気の温度が最大で3000℃を超え、水は蒸発してさらに水素と酸素に分解される。一方、夜半球の上層気温は1500℃にまで下がるため、昼半球と夜半球で1500℃も気温差が生まれることで強風が吹き抜け、水素と酸素を夜半球まで運び、夜半球側で水素と酸素が再結合して水蒸気となり、そのまま再び昼半球に吹き込むという循環をもつ。天文物理学者のTansu Daylan氏によると、この強風は20時間程度で惑星全体の雲を移動させることができるとされる。
WASP-121 bにて様々な金属元素(バナジウム、鉄、クロム、カルシウム、ナトリウム、マグネシウム、ニッケルなど)は確認されたが、アルミニウムやチタンが検出されなかった。研究チームはアルミニウムやチタンが凝縮し地表に降り注いでしまったためだと推測し、アルミニウムは大気中の酸素と凝結すると「コランダム」という鉱物になり、コランダムにクロムや鉄、チタン、バナジウムなどの不純物が含まれるとルビーやサファイアになるため、WASP-121 bの夜半球に液体のルビーやサファイアが雨となって降り注いでいる可能性があると推測した。

Delrez, L. et al. (2016). “WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star”. Monthly Notices of the Royal Astronomical Society 458 (4): 4025-4043. arXiv:1506.02471. Bibcode: 2016MNRAS.458.4025D. doi:10.1093/mnras/stw522. ISSN 0035-8711.
Evans, Thomas M. et al. (2017). “An ultrahot gas-giant exoplanet with a stratosphere”. Nature 548 (7665): 58-61. arXiv:1708.01076v1. Bibcode: 2017Natur.548…58E. doi:10.1038/nature23266. ISSN 0028-0836.
David K. Sing. et al. (2019). “The Hubble Space Telescope PanCET Program: Exospheric Mg ii and Fe ii in the Near-ultraviolet Transmission Spectrum of WASP-121b Using Jitter Decorrelation”.The Astronomical JournalVolume 158Number 2https://iopscience.iop.org/article/10.3847/1538-3881/ab2986/pdf
Mikal-Evans, T., Sing, D.K., Barstow, J.K. et al. Diurnal variations in the stratosphere of the ultrahot giant exoplanet WASP-121b. Nat Astron 6, 471–479 (2022).https://doi.org/10.1038/s41550-021-01592-w An exotic water cycle and metal clouds on the hot Jupiter WASP-121 b | Max Planck Institute for Astronomy (mpia.de)

(文責:小川)

TOI-2109 b

TOI-2109 b は、太陽系から 861.1 光年( パーセク)離れた恒星TOI-2109 を周回する系外惑星で 2021 年に公開されました.
恒星 TOI-2109 は視等級 10.0, 絶対等級 2.9 です.
この恒星は太陽の 1.4 倍の質量で、 半径は太陽の1.7 倍であり 表面温度は 6500 で、スペクトル型は F0です。
この恒星の惑星系で TOI-2109 b は、恒星 TOI-2109 のまわりを 公転周期0.7 日で、 軌道長半径 0.02 天文単位 ( 2541783.2 km)で公転しています

 

公転周期がわずか16時間。いつか消滅する?観測史上2番目に熱いホット・ジュピター(2022年現在)。

2021年にIan Wongを筆頭とする研究グループにより発見が公表された。
ヘルクレス座の方向におよそ855光年先に存在する木星より一回り大きい巨大ガス惑星であり、F型恒星TOI-2109の周囲を公転している。質量は木星の5.02倍、半径は木星の1.35倍で、恒星との距離が近くて表面温度が高温である「ホット・ジュピター」に分類される。
恒星であるTOI-2109からの距離が約240万km(太陽と地球の距離はおよそ1億5000万km)と極めて近くて、公転周期(地球における1年)がわずか約16時間しかないことが特徴的。

恒星のTOI-2109は太陽よりも一回り大きい表面温度の高いF型星であることから、距離の近いTOI-2109 bの昼側の表面温度は摂氏およそ3330度と推定され、同じくホット・ジュピターであるKELT-9 b(摂氏約4300度)に次いで系外惑星の観測史上2番目に高いとされている。
TOI-2109 bの軌道はいずれ主星TOI-2109への落下が予想され、1000万年後にこの惑星は存在しないかもしれないと語られている。

※恒星の名前にあるTOIとはTess Objects of Interest の頭文字で、太陽系外惑星探索衛星TESSの観測により惑星が存在する可能性が示された天体のカタログを意味している。TOIカタログにリストアップされた天体は、ドップラー分光法や直接撮像法などの、トランジット法以外の観測方法によって追加観測が実施される。

TOI-2109: An Ultrahot Gas Giant on a 16 hr OrbitIan Wong et al 2021 AJ 162 256

TOI-2109: An Ultrahot Gas Giant on a 16 hr Orbit (iop.org)

Ultrahot Gas Giant Found Circling TOI-2109 | Sci-News.com

(文責:小川)