カテゴリー: 系外惑星の紹介

WASP-12b

<WASP-12bの想像図 credit: Haruka Inagaki, Habitable Research Group SHG Moriyama High School >

WASP-12bは、2008年に発見された、太陽系からおよそ1410光年のところにある系外惑星です。質量が木星の1.47倍、半径が木星の1.90倍の巨大ガス惑星ですが、主星であるぎょしゃ座WASP-12からわずか0.0229AU(約345万km)の位置にある「ホットジュピター」です。これまでに数多くのホットジュピターが発見されていますが、その多くは公転周期が2,3日程度であるのに対し、WASP-12bの公転周期は1.09日と、数あるホットジュピターの中でも特に「熱い」惑星と言えます。その一方で、可視光線の94%を吸収してしまう「暗い」惑星でもあります。

この惑星は潮汐ロック状態,つまり地球の月と同様に主星に対して常に同じ面を向けた状態になっています。表面温度は夜側が1500Kであるのに対して昼側は2800Kと非常に高温で、これは主星からの輻射だけでなく、潮汐力の影響を受けています。潮汐力は、地球と月の場合では潮を満ち引きとして観測されますが、WASP-12bの場合は主星と非常に近いため、惑星全体がラグビーボールのような形状に歪められるほど強力で、この強い潮汐力による潮汐加熱が高い表面温度の原因の一つになっています。

esttemp

<ExoKyotoを用いて表示したWASP-12bの予想温度と、今までに見つかった系外惑星の推定温度・主星の温度との比較図。*この図ではアルベドを0.3と仮定しているため、実際の温度(2580K)よりも若干低く見積もられている>

また、この潮汐加熱によって惑星内部の温度が上昇することで、惑星大気が木星半径の約3倍まで膨れ上がっており、Shu-Lin Li氏(北京大学)の、「惑星内部の潮汐加熱による惑星の膨張」(Li et al, 2010. Nature)の予言が証明されました。

WASP-12bの重力では、この大きく膨張した大気を留めておくことはできず、主星の重力によって惑星から大気が剥がされて主星に降着していることが、ハッブル宇宙望遠鏡のCosmic Origin Spectrograph(COS)によって観測されています。惑星から剥がされた毎秒60億トンもの質量は、主星の周りに円盤を作りながらゆっくりと降着しています。このように天体間で質量がやりとりされる現象は一般的に近接した連星系で見られていましたが、惑星で観測されたのは初めてです。

WASP-12bは、現在のペースで大気が剥がされていくと今からわずか1000万年以内にガスをすべて失ってしまうとも言われています。ただ人類の歴史に比べれば遥かに長い時間ですので、我々人類がその結末を見る事が出来るかは不明ですが…

(文責:山中陽裕・野津翔太・清水里香)

wasp-12b

<WASP-12bの想像図 credit: Ryusuke Kuroki, Yosuke Yamashiki, Natsuki Hosono>

WASP-12bについての詳しい情報はこちら

http://www.exoplanetkyoto.org/exohtml/WASP-12_b.html

参考情報

NASA “Hubble Finds a Star Eating a Planet”

<https://www.nasa.gov/mission_pages/hubble/science/planet-eater.html> (2020/3/16)

HUBBLESITE “NASA’S HUBBLE CAPTURES BLISTERING PITCH-BLACK PLANET”

<https://hubblesite.org/contents/news-releases/2017/news-2017-38.html> (2020/3/16)

GJ504b

GJ504bの想像図 (Image Credit: Shione Fujita, Habitable Research Group, SGH Moriyama High School)

GJ504bは地球からおとめ座方向に約60光年のところに位置する惑星です。太陽型恒星GJ504から44天文単位の領域を公転周期約100年で周回しています。
その大きさが木星と似た木星型惑星であることから第二の木星とも呼ばれています。また、赤外線波長で17~20等というGJ504の60万分の1以下の見かけの明るさしかありません。

2013年にハワイ・マウナケア山にあるすばる望遠鏡が、GJ504bの直接撮像観測に成功しました。
観測には2009年に搭載された新型コロナグラフカメラ HiCIAOと、地球大気による星像の乱れを補正することで高解像度を達成する補償光学装置が使われました。
また、この惑星は日本の研究チーム(すばる望遠鏡 SEEDS プロジェクト)により発見された歴史的な惑星です。大気中の雲が少ないのが特徴で、近くで見るとピンク色に見えるとも言われています。

一般に直接撮像惑星観測では、惑星の質量は明るさと年齢に基づき進化モデルを介して推定されます。一般に直接撮像観測の場合、トランジットで発見された惑星の分布などとは異なり、若く明るい惑星の方がより多く発見されている傾向があります。しかし若い直接撮像惑星の進化モデルにはまだ不確定な所があり、推定される質量が用いたモデルによって大きく異なるという結果が出てしまいます。一方でGJ504bの場合、年齢が1-5億年前とそれなりに歳を重ねているため、従来よりも質量が精度よく求まり、より高い信頼度を持って木星型惑星である、と結論づけられています。

参考文献:Kuzuhara, M., et al. 2013, ApJ, 774, 11
http://adsabs.harvard.edu/abs/2013ApJ…774…11K

(文責・高木風香 野津翔太)

gas1p

GJ504bの詳しい情報は以下のリンク

http://www.exoplanetkyoto.org/exohtml/GJ_504_b.html

HR 8799 b, c, d, e

図1 HR 8799bの想像図と、遠くに見えるA型星 HR8799 (Y.Yamashiki, R.Kuroki & N.Hosono)

2008年11月、地球から128.5光年(39.4 pc)離れたペガスス座にあるA型主系列星HR8799星の周りで、HR8799bという木星の7倍程度の質量を持つ太陽系外惑星が発見されたという報告がなされました(図1:想像図)。観測はハワイにあるケック望遠鏡、ジェミニ北望遠鏡、そしてハッブル宇宙望遠鏡を用いて赤外線で行われており、同時にHR8799c, HR8799d, HR8799eという木星の10倍程度の質量を持つ惑星も見つかりました(図2,図3)。これらは直接撮像観測という、惑星自体の光を直接捉える手法で発見された初めての惑星たちとして有名です。

hr8799nn_d
図2 HR 8799dの想像図と、遠くに見えるA型星 HR8799 (Y.Yamashiki, R.Kuroki & N.Hosono)

hr8799system
図3 ExoKyotoで描いたHR 8799恒星系システムとそのハビタブルゾーン(SEAU, 赤色が金星相当軌道、緑色が地球相当軌道、水色が火星相当軌道、青がスノーラインを示す。それぞれの惑星(e-b)推定軌道は紫色)

2010年にはHR8799の周りに、同じく直接撮像観測で4つ目の惑星HR8799eという惑星も発見されました(Marois et al. 2010, Nature)。
更にこれらの惑星たちの発見を機に、過去の画像を再解析してみたところ、実は1998年のハッブル宇宙望遠鏡の観測画像(図5)と、2002年のすばる望遠鏡の観測画像(Fukagawa et al. 2009, ApJ)にHR8799bが写り込んでいたことが分かりました。

Kepler宇宙望遠鏡で発見された惑星を始め、多くの太陽系外惑星はドップラー法やトランジット法といった間接法で発見されています。
一方太陽系外惑星自体からの光を直接捉える手法(直接法)の場合、惑星発見数は間接法に比べ少なめです。しかし惑星からの光には惑星大気に含まれる分子の吸収や惑星表面(陸、海、森など)の色の情報が含まれており、惑星からの光の分光観測は、惑星大気や表面の環境など、惑星自体の性質を詳細に知るためには欠かせない観測になります。2013年に報告されたHR8799c周りの惑星たちの分光観測からは、大気中の水やメタンなどの存在が示唆されています(Konopacky et al. 2013, Science )。日本でも近年、すばる望遠鏡を用いて太陽系外惑星の直接撮像観測が行われており、今後は京都大学岡山3.8m望遠鏡を用いた直接撮像観測も行われる予定です。

hr_8799_b_stz0

hr_8799_b_stz3
図8 a,b ExoKyoto Stellar Windowにて表示したHR8799の位置 ペガスス座に位置する

(文責:野津翔太)

HR 8799 についての詳しい情報はこちら

HR8799 System
HR 8799 b
HR 8799 c
HR 8799 d
HR 8799 e

HD 189733 b

<Imaginary Picture of HD189733 b, Credit Daichi Ogawa, SGH Moriyama High School>

HD 189733 b は 2005 年に発見された木星サイズの太陽系外惑星で、こぎつね座 HD 189733 A 星の周りを 2.22 日の周期で回っています。太陽系からの距離は 62.9 光年(19.3 pc)です。軌道が主星から非常に近い「ホット・ジュピター」の一つで、恒星の重力により常に一つの面を主星に向けています。

https://www.nasa.gov/mission_pages/spitzer/multimedia/A-Knutson-surface.html

またこの天体は太陽系からの距離が比較的近いため、様々な観測によりその詳細な性質が調べられているのが特徴です。2007 年、スピッツァー宇宙望遠鏡の観測で、惑星表面の温度分布が観測されました。それによると、最も温度が高い場所は惑星表面で主星が真上に見える場所と 30 度ほど東にずれている事が分かりました。この事から、HD 189733 b では激しい風が吹いていて、熱を運んでいるのだと考えられています。ちなみにこの研究は、史上初の太陽系外惑星表面の「地図」の発表としても有名になりました。

hd189733b
(Image Credit: Ryusuke Kuroki, Yosuke Yamashiki & Natsuki Hosono)

さらに2013年にはハッブル宇宙望遠鏡の観測により、惑星が中心の星の裏側を通り隠れる際に青色の波長の光だけが弱くなることから、この惑星の色が青色であることが分かりました。
これは水の海があるからではなく、大気中に存在するケイ酸塩粒子が高温ゆえにガラスの雨粒の様になっており、これが中心の星からの光を散乱することで青く輝いています。

同じく 2013 年にはチリの Very Large Telescope による波長分解能の高い詳細な観測から、惑星自体の H2O, CO ガス輝線放射が検出されたことでも話題になりました。そのほかこの年には、NASA のチャンドラと欧州の XMM ニュートンという2つの X 線天文衛星でこの天体を観測することにより、太陽系外の恒星の手前をその星を公転する系外惑星が横切る「トランジット」が、X 線で初めて検出されています。

(文責:野津翔太)

hd_189733_b_stz0
(Position in Stellar Map of star HD 189733 and its Exoplanet HD 189733 b)

hd_189733_b_stz3
(Zoomed position in Stellar Map of star HD 189733 and its Exoplanet HD 189733 b (zoom level 3))

HD 189733 b についての詳しい情報はこちら。
http://www.exoplanetkyoto.org/exohtml/HD_189733_b.html

TRAPPIST-1 b, c, d

(Imaginary TRAPPIST-1 System by Exoplanetkyoto Image Credit: Yosuke A. Yamashiki, Fuka Takagi, Ryusuke Kuroki, Natsuki Hosono)

trappist_d
(Imaginary Picture of TRAPPIST-1 d, Credit Shione Fujita & SGH Moriyama High School)

TRAPPIST-1 は、みずがめ座に位置し、太陽系からおよそ39光年離れたところに存在する、M8型の赤色矮星で、表面温度2550K、半径はProxima Centauriより小さい0.117太陽半径、質量は0.08太陽質量です。木星の半径は0.1太陽半径、質量は0.001太陽質量なので、見かけ上木星よりわずかに大きく、質量は木星の80倍程度なので、いわゆる自分で光るギリギリの大きさの恒星(矮星)だと言えます。Ultra Cool Dwarf Star(超低温矮星)とも言われています。

(TRAPPIST-1の大きさの比較図 左はProxima Centauri星との比較、右は太陽との比較)

TRAPPISTとは、TRAnsiting Planets and PlanetesImals Small Telescopesの略で、ベルギー・リエージュ大学(http://www.ulg.ac.be/cms/c_5000/accueil)の天文地学海洋専攻(AGO)のプロジェクトでチリのESO La Silla 天文台 とモロッコのOukaïmden 天文台(2016.10.6開始)に設置された望遠鏡ネットワークであり、このTRAPPIST-1は2016年にLa Silla天文台で発見され、地球よりわずかに大きな惑星が3つ、このクラスの赤色矮星の周りに初めて発見されました1) 。さて、特にこのTRAPPIST-1系のハビタブルゾーンにあると言われた3番目の惑星TRAPPIST-1dのトランジット観測による周期と軌道が確定せず、ハビタブルゾーンの惑星発見のニュースはキャンセルされるかと心配されていました。ところがそれがさらなる大発見につながったのです。

2017年2月22日(日本時間2月23日午前3時)、NASAはTRAPPIST系に合計7つの惑星が発見されたと発表しました。また、そのうち3-4つはハビタブルゾーンにあると考えられています。

(Imaginary Picture of TRAPPIST-I b, credit, Yosuke Yamashiki, Ryusuke Kuroki & Natsuki Hosono)

<潮汐ロックされたと仮定した場合のTRAPPIST-1 dの想像図 credit: Miu Shimizu, Habitable Research Group SGH Moriyama High School>

<潮汐ロックされたと仮定した場合のTRAPPIST-1 eの想像図 credit: Rina Maeda, Habitable Research Group SGH Moriyama High School>

(潮汐ロックされたと仮定した場合のTRAPPIST-1 fの想像図 (アイボールアース), credit: Haruka Inagaki, Habitable Research Group, SGH Moriyama High School)

(Imaginary Picture of TRAPPIST-I h, covered with imaginary ice, credit, Yosuke Yamashiki, Ryusuke Kuroki & Natsuki Hosono)

(TRAPPIST-1の7つの惑星群の公転の状況)

それぞれの公転軌道半径は(TRAPPIST-1 b, c, d, e, f, g, hの順で) 0.011, 0.015, 0.021, 0.028, 0.037, 0.045, 0.063 天文単位に存在し、半径はそれぞれ地球の1.08, 1.05, 0.77, 0.92, 1.04, 1.12, 0.76倍と、ほぼ地球の大きさに等しいと見積もられています。この星のハビタブル・ゾーンは太陽系相当天文単位(SEAU)によると、
金星相当軌道 0.016 天文単位
地球相当軌道 0.023天文単位
火星相当軌道0.035天文単位
trappist-1_d_orbh

(SEAUによるハビタブルゾーンの位置)

Kopparapu et al.2013によると
内側境界Recent Venus 0.019天文単位
地球サイズ惑星の暴走温室限界 0.024天文単位
外側境界最大温室限界0.048天文単位
trappist-1_d_orbk

(Kopparapu et al. によるハビタブルゾーンの位置)

となっており、SEAUによると、bは内側境界の内側で温度は高く、c, d, eはハビタブル・ゾーンに存在すると考えられています。

(SEAUによるハビタブルゾーンとTRAPPIST-1b,c,d,e,f,g,hの軌道位置,赤線が金星相当軌道,緑が地球相当軌道,水色が火星相当軌道,青がスノーライン)

ただし、TRAPPIST-1 bにおいても、潮汐ロックされているとすれば、惑星の昼半球と夜半球の境界領域にハビタブル・ゾーンが存在する可能性が指摘されており、また、他のf,gについてもスノーラインの内側にあり、潮汐力や内部の熱源などあれば、ハビタブルゾーンと考えられる可能性もあります。

また、Kopparapu et al.2013によると、ハビタブルゾーンにある惑星は、d, e, f ,g となり、先ほどのcは内側境界の中に位置してしまいます。TRAPPIST-I dはしかしながらRecent Venusの内側に位置はしますが、暴走温室限界線の内側にあるので、そのままでは海洋は存在できませんが、潮汐ロックされている場合境界領域(terminator)に狭い海が存在しうるとも考えられます。TRAPPIST-I gはしかしながら、外側境界最大温室限界付近のため、十分な温室効果ガスがある場合のみ居住可能だと考えられます。

(Kopparapu et al. 2013 によるハビタブルゾーンとTRAPPIST-1b,c,d,e,f,g,hの軌道位置,赤線がRecent Venus境界線、緑色が薄い色からそれぞれ火星・地球・スーパーアースサイズの暴走温室限界線,その外側の薄青色が最大温室効果限界線(Maximum G), その外側の青が初期火星線(Early Mars)。この判定によるとTRAPPIST-1 e, f, gがハビタブルゾーンとなる)

NASAの公式ページには、カラフルなイメージ図やVR, 3Dイメージなども公開されています。

https://exoplanets.nasa.gov/trappist1/

カリフォルニア工科大学のジェット推進研究所(JPL)-Spitzer宇宙赤外望遠鏡のページによると、TRAPPIST-1の惑星のほとんどすべてが潮汐ロックされており(すなわち、常に中心星TRAPPIST-1に同じ面を向けており)、乾燥して暑い(熱い)昼半球と、寒くて氷に覆われているであろう夜半球にわかれているだろうとされています。ハビタブルゾーンに存在する惑星はTRAPPIST-1 e, f, gであるが(b-hの)いずれの惑星も液体の水が潜在的に存在する可能性があるとされている。また境界領域(terminator)に海が存在するのはTRAPPIST-1dで、海が広く存在する可能性のあるTRAPPIST-1e,fでも昼半球に集中しており、夜半球は氷で覆われているであろう、と解説がされています。このページではTRAPPIST-1 bは木星の衛星イオ(Io)のようであり、また最も寒いTRAPPIST-1 hはエウロパ(Europa)のように描かれています。

http://www.spitzer.caltech.edu/images/6266-ssc2017-01a-TRAPPIST-1-Planet-Lineup

2018年2月のより詳細な調査結果によって、いくつかの惑星は地球よりも水を大量に保有している可能性も示唆されています。より中心星に近いb,cでは水蒸気、d,e,fでは液体と氷、そしてgは大部分が氷としてでしょう。この詳細調査によって、それぞれの惑星の密度がより正確に求められました。現在ではTRAPPISTシステムは最もよく観測された惑星システムの一つといえます。

七つの地球サイズの惑星にそれぞれ液体の水が存在する可能性のある惑星系というのは、非常に興味深い惑星系です。また赤色矮星の寿命は太陽とくらべて桁違いに長いので、もしかすると非常に長い間進化した安定的な生命体が文明を築き、それぞれの惑星間で文明交流を繰り返しながら今後も長きにわたって存在してゆく、「理想郷」なのかもしれません*。
(文責:山敷庸亮)

TRAPPIST-1についての詳しいデータは以下のデータベースに

http://www.exoplanetkyoto.org/exohtml/TRAPPIST-1.html

* 実際に理想郷かどうかについて、以下のような懸念と論点もあります(野津翔太・山敷庸亮)

1) M型星は黒点活動・フレア等が太陽型星より活発であり、ハビタブルゾーンでの紫外線・X線強度などが強い。それらがハビタビリティにどう影響するかは不明。惑星大気が剥ぎ取られている可能性も否定できないが、逆に厚い大気に覆われていれば、これらが高エネルギー電磁波のシールドになる可能性もある。ただし、潮汐ロックされているとすれば、地磁気が存在しない可能性もあるため、その点では荷電粒子の直撃を受ける可能性も高い。
2) M型星の中でも低温側の星は全球対流状態にあると同時に、自転・活動性の振る舞いがM型の高温側の星に比べて良く分かっていない部分もあるため、実際どの程度このTRAPPIST-1が上記の活動があるのかはわからない。

なお、イラストにおいてexoplanetkyoto のページでは、潮汐ロックは起こりうるであろうが、それぞれ自転している惑星を想定しての想像図となっています

以下、Stellar Windowを利用して表示したTRAPPIST-1の星図上での位置。

trappist-1_d_stz0
(Position in Stellar Map of star TRAPPIST-1 and its Exoplanet TRAPPIST-1 b,c,d,e,f,g,h)
trappist-1_d_stz3
(Zoomed pos.in Stellar Map of star TRAPPIST-1 and its Exoplanet TRAPPIST-1 b,c,d,e,f,g,h)

1)Michaël Gillon, Emmanuël Jehin, Susan M. Lederer, Laetitia Delrez, Julien de Wit, Artem Burdanov, Valérie Van Grootel, Adam J. Burgasser, Amaury H. M. J. Triaud, Cyrielle Opitom, Brice-Olivier Demory, Devendra K. Sahu, Daniella Bardalez Gagliuffi, Pierre Magain & Didier Queloz. Temperate Earth-sized planets transiting a nearby ultracool dwarf star, Nature 533, 221–224 (12 May 2016) doi:10.1038/nature17448, Received 11 January 2016 Accepted 18 February 2016 Published online 02 May 2016
http://www.nature.com/nature/journal/v533/n7602/full/nature17448.html

https://www.theguardian.com/science/2016/may/02/could-these-newly-discovered-planets-orbiting-an-ultracool-dwarf-host-life

2)Michaël Gillon, Amaury H. M. J. Triaud, brice-Olivier Demory, Emmanuël Jehin1, Eric Agol, Katherine M. Deck, Susan M. Lederer, Julien de Wit, Artem burdanov, James G. Ingalls, Emeline bolmont, Jeremy Leconte, Sean N. Raymond, franck Selsis, Martin Turbet, Khalid barkaoui, Adam burgasser, Matthew R. burleigh, Sean J. Carey, Aleksander Chaushev, Chris M. Copperwheat, Laetitia Delrez, Catarina S. fernandes, Daniel L. Holdsworth, Enrico J. Kotze, Valérie Van Grootel, yaseen Almleaky, Zouhair benkhaldoun, Pierre Magain & Didier Queloz. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (23 February 2017) doi:10.1038/nature21360.

Received Accepted Published online 

http://www.nature.com/nature/journal/v542/n7642/full/nature21360.html

HD 164595 b

(Imaginary Picture of Warm Neptune HD164595 b)

HD 164595 b は、2015 年に Courcol ら によって発見された、太陽系から 94 光年(28.9 pc)離れた距離にある海王星サイズの系外惑星です。

中心星 HD 164595 は、太陽と同じ G 型星(G2V)で、表面温度は 5790 度、質量は 0.99 太陽質量と、太陽とほどんど同じです。そのため、HD 164595 恒星系のハビタブルゾーンは、太陽系とほとんど同じ位置にあると考えられます。それに対して、HD 164595 b は軌道長半径 0.23 天文単位(3441万km)と、水星軌道より随分内側を公転周期 40 日で一周し、質量が地球の 16 倍、半径が地球の 4.17 倍という、熱い海王星(Hot/Warm Neptune)だと考えられます。表面温度の計測結果はありませんが、惑星のアルベドを 0.3 と仮定すると、黒体温度が 531 ケルビン(摂氏258℃)と相当高くなり、地球型生命が住むには不適切な環境ではないかと想像できます。例えばこの惑星が大型の衛星を有していたとしても、その公転軌道(離心率は低い)から、ハビタブルゾーンに位置するのは困難であると考えられます。

HD169495Image
(Imaginary Picture of Warm Neptune HD164595 b orbiting around its Host Star HD164595)

HD164595Star
(ExoKyoto(アプリ版) による HD 164595 中心星の表示画面。中心星はG型星(G2V)で、その大きさの比較が、下の段の4つに記されています。左からハビタブル・ゾーン惑星が見つかったProxima Centauriとの比較、二番目が太陽との比較(大きさがほとんど同じ)、三番目がふたご座のポルックス(Pollux)との比較、一番右側がオリオン座のリゲル(Rigel)との比較)。ハビタブル・ゾーンの表示は、太陽系相当天文単位(SEAU)で、赤い線が金星軌道相当線、緑が地球軌道相当線、青が火星軌道相当線、で、この中心星データからの推定値では、ほとんど太陽系と一致しています)
HD_164595_b_OrbK
(ExoKyoto による HD 164595 の公転軌道とハビタブル・ゾーン(Kopparapu et al. 2013 による)の表示。金星相当軌道より内側にあることがわかります)

2016 年に、この恒星系から11GHzの電波シグナルが観測されたとの発表がありました。
(CNN News)
(Wired日本語記事)

現在、11GHzの電波シグナルの真偽については様々な議論がなされていますが、上述のとおり、このシグナルが「仮に」知的生命体のものであったとしても(1)知的生命体は、この惑星 HD164595 b ではなく、「未発見の」HD 164595 恒星系のハビタブルゾーンに位置する岩石惑星に住んでいるか、(2)地球型以外の(灼熱の環境・あるいは液体の水のない環境で生息できる)知的生命体か存在するか、あるいは(3)このシグナルが知的生命体が発信したものではないか、(4)Vakoch らが述べているように、重力レンズの作用で他の天体からの電波が曲げられたか、あるいは(5)観測エラーか、のどれかであることが考えられます。

また、HD 164595 は、ヘラクレス座(ケプラー観測領域のはくちょう座とこと座周辺)に位地し、夏から秋の夜空で観測することが可能なため、興味のある方は望遠鏡を向けて観測されることをお勧めします。

HD169495Stellar
HD164595_1
HD164595_2
(ExoKyoto Stellar Window を用いた HD 164595 の天球上の位置表示)

HD 164595 b についての詳しい情報は、こちらをご覧ください。
http://www.exoplanetkyoto.org/exohtml/HD_164595_b.html

(文責:山敷庸亮)